
rescape Manual
Regulatory Evolution Landscape Simulator

Kevin Bullaughey
kbullaughey@gmail.com

February 11, 2011

1

Contents

1 Overview . 3

2 Terminology . 3

3 Modes of operation . 3

4 Inputs . 4

5 Invoking rescape: an example . 4

6 Parameters . 4
6.1 Regulatory problem . 5
6.2 Fitness function . 7
6.3 Evolution simulation . 7
6.4 Population statistics . 8
6.5 Landscape statistics . 8

7 Output . 9
7.1 --pstat=most freq seq,N . 9
7.2 --pstat=most freq noseq,N . 10
7.3 --pstat=mean fitness,N . 10
7.4 --pstat=all alleles,N . 10
7.5 --pstat=mutational effects . 10
7.6 --pstat=allele loss . 11
7.7 --lstat=fitness,N and --lstat=sequence,N 11
7.8 --lstat=expression,N . 11
7.9 --lstat=tf occupancy,N and --lstat=wsum,N 12
7.10 --lstat=configs,1 . 12
7.11 --neighbors=R . 13

8 Obtaining source code . 13

2

rescape Manual

1 Overview

This manual provides documentation of the rescape program, which is short for regulatory
evolution landscape simulator. rescape simulates sequence evolution of an enhancer using a
computational model of regulatory function based on the Segal model [1], a fitness penalization
for misexpression, and forward population simulations. It was originally used by Bullaughey [2]
to investigate nucleotide substitution processes in a regime of stabilizing selection for a particular
regulatory output of simple toy enhancers. For an overview of the model and details on the
implementation, please refer to the original paper [2]. The purpose of this manual is to document
usage of the program and aid interpretation of the output.

2 Terminology

Throughout this manual I invoke specific meanings of certain biological terms as they are relevant
to the simulation.

A transcription factor’s activity is the degree to which it contributes to activation of the
basal transcription apparatus (for a repressor, this is a negative quantity). An enhancer is a
specified length of DNA that is being modeled and is assumed to have regulatory function, and
be in whatever chromatin configuration is necessary to be expressed. The enhancer is assumed
to function in one or more discrete trans-backgrounds, each of which can be thought of as a
particular cell type, developmental time point, or spatial position. Each trans-background is de-
fined by the expression levels of the transcription factors (TFs) present. Each trans-background
has an optimal expression level of the gene in that trans-background. The trans-backgrounds,
together with the optima and a specification of the TF binding functions and activity levels,
defines a regulatory problem, i.e., the particular task faced by the gene to express properly
and what it has to work with.

Some terminology relates specifically to the Segal model and I follow my earlier conven-
tions [2]. Occupancy of a nucleotide in the enhancer is the probability a TF is observed to be
bound in a way overlapping the nucleotide. A configuration is a particular arrangement of TFs
on the enhancer. The only valid configurations include the empty configuration (no TFs) or
configurations with non-overlapping TFs.

3 Modes of operation

rescape has two basic modes of operation. One is to do forward population simulations. The
other mode is to compute various statistics related to the sequence fitness landscape. Possibilities
here include computing expression profiles or various occupancy statistics. These statistics can
be computed for either sequences sampled iid from sequence space or all sequences within some
number of mutational steps of a provided or sampled sequence. Alternatively, one can simply
sample iid from the distribution of configurations of TFs for a regulatory problem.

rescape Manual

4 Inputs

There are several components that need specification in order to parameterize the regulatory
landscape and optionally, simulate regulatory evolution of an enhancer. Parameters required for
specification of the fitness landscape include the binding functions of the TFs, the TF activity
levels, the expression levels of these TFs in each trans-background, the optimal expression lev-
els in each trans-background, and the shape of the fitness function. For simulating regulatory
evolution, additional parameters need specification including population size, number of gener-
ations, mutation rates, insertion and deletion rates and distributions, and the initial sequence
representing the initially monomorphic population. Finally, parameters dictating what output
is to be provided are also needed. All these parameters are specified on the command line in an
order-independent way.

5 Invoking rescape: an example

As an example, the following is one invocation of the rescape command used in the original
paper:

./rescape --model=segal --steps=200000 --length=100 --seed=1 \
--pwm=pwm_pair.pwms --tfs=2 --lambda=-1,2,-3 --gamma=2,-0.5,-0.5,2 \
--ffunc=f4 --coef=0.6,0.041,0.786,0.999 \
--condition=0.02,0.3 --condition=0.3,0.3 --condition=0.3,0.02 \
--popsim -N 1000 -g 2000000 -u 5e-07 \
--pstat=most_freq_seq,100 --pstat=mutational_effects --pstat=allele_loss \
--seq=catttcggtcttgtttttggcgc...

Here the Segal model is used to simulate evolution of a 100 bp enhancer under three trans-
backgrounds using a Gaussian kernel as the expression-fitness function.

To get a condensed help message detailing the possible command-line options to rescape,
simply invoke the program with no options, or the --help or -h options.

6 Parameters

Specification of the model is rather verbose at the moment, which allows for some consistency
checking so that copy-paste errors can somewhat be avoided when running many variations of
simulations.

Currently the only model that is implemented in its entirety is the Segal model. Originally,
I experimented with several other models of fitness landscapes (completely neutral, Orr’s block
model), but these are not complete. So all invocations of the program should contain the
parameter: --model=segal.

And when invoking the Segal model, one needs to specify how many samples, S, will be drawn
(iid) from the distribution of configurations. This is to compute the following summation, which
is estimated using Monte Carlo sampling:

rescape Manual

P (E) =
∑

ck∈C

P (E|ck)P (ck) ≈
1
S

S∑
i=1

P (E|ci)

How many samples to draw is given with the --steps=S parameter. Naturally, the more sam-
ples, the more accurate the estimate of expression. This is particularly important when running
evolutionary simulations, because misestimation of expression will lead to misestimation of fit-
ness, and potentially allow mutations to fix that would not ordinarily fix, and potentially, create
artificial local optima, due to an overestimation of fitness, making subsequent mutations look
artificially unfit. I found that 200,000 samples was appropriate for a population size of N = 1000
and a selection tolerance parameter of σ2 = 0.6 (see below). In this setting, estimation error
was generally an order of magnitude smaller than 1

N which is the approximately the magnitude
when selection is overwhelmed by drift.

The --length=N parameter gives the length of the enhancer sequence. This is not required
if a sequence is specified, but must be provided if computing statistics of sequences sampled
uniformly from sequence space (so the program knows to generate sequences of the desired
length).

The seed of the random number generator can be set with --seed=N, where N is an non-
negative integer. Starting with the same seed is guaranteed to run deterministically, and iden-
tically each time.

Finally, if either a population simulation starting with a particular enhancer sequence is
desired or if landscape statistics of a certain enhancer sequence are desired, the enhancer sequence
can be specified with --seq=<dna>. If multiple sequences are given, the requested operations
are performed for each of the given sequences.

6.1 Regulatory problem

Specification of the regulatory problem requires providing the parameters: --pwm, --tfs, --lambda,
--gamma, and one or more --condition specifications. In what follows, I reproduce equations
from the paper using this implementation [2], which are very similar to the formulation given in
the original formulation of the Segal model [1]. For a more complete description of the model,
please refer to these papers.

--pwm=<filename> gives the file name of the position weight matrix file which specifies the
binding affinity of the TFs. Here is an example of a valid pwm file:

pwm 6
0.3369 0.2508 0.9626 0.8526 0.6829 0.8748
0.0513 0.3186 0.0181 0.0449 0.2433 0.0072
0.5338 0.2232 0.0077 0.1021 0.0123 0.0902
0.0779 0.2074 0.0116 0.0004 0.0615 0.0278
pwm 6
0.0834 0.1921 0.4285 0.1172 0.9270 0.2437
0.1072 0.0138 0.1041 0.0154 0.0022 0.1425

rescape Manual

0.3878 0.1982 0.3906 0.8614 0.0650 0.0247
0.4216 0.5958 0.0768 0.0059 0.0058 0.5891

For this file to be formatted properly, it must consist of one or more PWM records. Each
record has a header line with the word pwm followed by a space followed by an integer, say r,
indicating the width of the PWM in nucleotide positions. The next four lines must contain a
matrix of site-specific affinities such that there are r columns and each column sums to one.
These are the relative affinity of each position to each of the four possible nucleotides. Rows
correspond to the affinities of each site to A, G, C, and T respectively.

The number of TFs that are being modeled is specified with the --tfs=T parameter, and this
must match the number of PWM records provided. --lambda=λ0, λ1, . . . , λT gives the activity
levels of the T TFs preceded by the basal activity level of the promoter, λ0. These (floating-
point) parameters come into play in the formulation of P (E|ck), which follows a logistic sigmoid:

P (E|ck) =
1

1 + exp(−
∑M

i=0 λTFi)

Where there are M TFs in configuration ck. The length of the --lambda vector must be one
more than the number of TFs given in --tfs. A positive λ codes for an activator and negative λ
codes for a repressor. Similarly, a negative λ0 codes for a generally repressive basal promoter and
a positive one codes for a generally activated one. A present limitation of this implementation
is that the λ parameters are the same across all trans-backgrounds, not allowing for a TF to
sometimes be an activator and sometimes a repressor, a situation known to be important in
some true biological settings.

Interaction properties of the TFs are given by --gamma=γ11, γ21, . . . , γTT , which lists a matrix
(iterating over rows before columns) of pair-wise TF-TF cooperativity parameters. It probably
makes most sense for this to be a symmetric matrix so that the interaction is the same for both
orderings of a pair of adjacent TFs. Omitting this parameter means there are no interactions
among TFs. γjk ∈ [−1,∞), with gjk = 0 indicating no interaction. These γjk parameters have
the effect of altering the probability of a configuration in a way that is a function of the distance,
d, between adjacently bound TFi−1 and TFi, such that the probability of a configuration, ck is:

P (ck) ∝ w(ck) =
M∏
i=1

τTFi

PWMTFi(sx, sx+1, · · · , sx+r−1)
PWMb(sx, sx+1, · · · , sx+r−1)

M∏
i=2

γ(TFi,TFi−1, d)

where γjk is given by this function of the distance, d, between the adjacent TFs, j = TFi−1 and
k = TFi:

γ(TFi = j, TFi−1 = k, d) = 1 + gjke
−d2

v

Currently, v is hard-coded to 80, which means that interactions only extend maybe 20 bp or so
for modest gjk (e.g.,. −0.9 < gjk < 9, a range covering up to a 10-fold decrease or increase in
P (ck) due to the interaction).

Finally, the last requirement for a regulatory problem is specifying the expression lev-
els of the TFs in each of the trans-backgrounds. These expression profiles are given by the

rescape Manual

--condition=τ1, . . . , τT parameters, where τi > 0. So, if a regulatory problem has three dis-
tinct trans-backgrounds, then three --condition vectors must be given.

6.2 Fitness function

The original purpose of the Segal model was to provide a predictive model of expression and was
essentially an optimization/inference problem. In order to use it to study evolution, I consider
several parameterizations of expression-to-fitness mappings. Presently there are six fitness func-
tions coded. The desired fitness function is given by the --ffunc=<choice> parameter where
<choice> is a character string selecting one of the following:

Choice Functional form Conditions Coeff. Notes
linear f = xTc B B linear combination
nop f = 1 arbitrary none neutral
f1 f = c1(x1 − c2)2 + c3(x2 − c4)2 + c5 2 5
f2 f = c

(−c2∗(x1−c3)2)
1 c

(−c5∗(x2−c6)2)
4 2 6

f3 f =
∏B

i=1(c
−c2(xi−ci+2)2

1)
1
C B B + 2 generalization of f2

f4 f = exp(−
∑B

i=1
(xi−ci+1)2

c1
) B B + 1 Gaussian kernel

Each fitness function (with the exception of nop) requires a vector of coefficients, --coef=c1,c2,...,
parametrizing the selected function.

Individuals are haploid, and so only the expression of a single allele need be computed.

6.3 Evolution simulation

The population simulation is a standard forward population simulation with Wright-Fisher
multinomial sampling of alleles based on the fitness of the alleles. Individuals are haploid, and
the expression profile of a single enhancer is the sole determinant of fitness for the individual.
Fitness of each allele is computed when it arises, and each newly arisen allele is given a unique
integer ID even if this particular allele has arisen before by a separate mutational event. I as-
sume a Jukes-Cantor mutation model with a single mutation parameter, thus mutating to/from
any base is equiprobable. There is no recombination implemented at the moment.

To run a forward population simulation, give the parameter --popsim (no argument re-
quired). The population size is indicated with -N and the number of generations with -g and
the per-base-pair mutation rate is given with -u. The mutation rate can be given either in
decimal or scientific notation.

To include insertions and deletions into the mutation model, provide the --duplication=u,n,p
and --deletion=u,n,p parameters. As the name suggests, insertions are modeled as tandem
duplications. Both duplications and deletions occur with some rate, u, and then conditional on
occurring, the length distribution follows a negative binomial distribution with size parameter,
n, and probability parameter, p. When the draw from the negative binomial is 0, this is equiva-
lent to no mutation occurring (and is not recorded). Thus the actual probability of no mutation
(of the particular type) is not exactly 1-u, it’s actually a bit higher, including the zero-class of
the negative binomial distribution.

rescape Manual

6.4 Population statistics

Population statistics are only permissible when running a population simulation by specifying
--popsim. There are two types of population simulation statistics: those printed at regular
intervals and those printed when certain events occur. The former are summaries of the state
of the simulation at the generation when they’re printed, while the latter detail the particular
event and give the generation when the event occurred. The below table summaries the possible
statistics.

Statistics printed every N generations:
--pstat=most freq seq,N Most frequent allele summary with sequence
--pstat=most freq noseq,N Most frequent allele summary, but no sequence

printed
--pstat=mean fitness,N Population mean fitness
--pstat=all alleles,N Details of each allele, sorted by number of copies
--pstat=allele counter,N Number of alleles queried so far
Real-time statistics:
--pstat=mutational effects Print fitness info for new mutants
--pstat=allele loss Print the generation and allele ID for alleles

when they’re lost

6.5 Landscape statistics

Landscape statistics can only be computed in the absence of --popsim, in which case one or
more --lstat statistics must be requested (otherwise there is nothing to do). Each landscape
statistic has the form: --lstat=<stat>,N where <stat> is the name of the requested statistic,
and N is the number of sequences about which to provide the statistic (i.e., when sampling).
Landscape statistics can be computed for either individual sequences (given with one or more
--seq parameters) or for the indicated number of replicate sequences (which are sampled iid
from sequence space). If multiple --lstat parameters are given it makes most sense for each to
have the same number or replicates, in which case all statistics are computed for each of the N
sampled sequences.

If --neighbors=R is given, then starting from each given or sampled sequence, all neighbors
within a mutation radius of R will also be included in the output. By mutation radius, I mean
sequences that can be reached with R or fewer point mutations. When --neighbors is given and
a landscape statistic is requested with more than one replicate, then statistics for all neighbors
of each replicate will be computed.

The possible landscape statistics are described in the following table:

rescape Manual

Statistic Models Description
--lstat=fitness,N All Print the enhancer fitness
--lstat=sequence,N All Print out the sequence
--lstat=expression,N Segal Print vector of expression levels
--lstat=tf occupancy,N Segal Print list of TF occupancy levels for each con-

dition and TF combination
--lstat=wsum,N Segal Print the sum of all configuration weights
--lstat=configs,1 Segal Print out N configurations, where here N is given

by the --steps=N parameter

7 Output

The program always prints two summary lines at the beginning. The first, beginning with
cmd: is the particular invocation of the command that was run, and the second, beginning with
params: gives the values of all parameters, including those that were not specified but are set
using the default values for those parameters (note, some of these are not documented here).
In the examples below, some of the output is replaced by an ellipsis (. . .) for brevity and lines
ending with a slash are not broken in the actual output and do not contain the slash. In (nearly)
all cases, the statistic gives the generation at which point it is printed, the name of the statistic
and one or more columns some of which may be prefaced by labels. Nucleotide positions count
from zero on up from left to right.

All of the output given below is available in its entirety in the examples directory of the
rescape distribution. In each case, there is a shell script with the original command and the
output from that command under the same root file name (with a .out extension).

7.1 --pstat=most freq seq,N

This results in a summary giving the most frequent sequence. The columns following the statistic
name are: the allele ID, the number of substitutions on the lineage leading to this allele, the
allele’s sequence, the fitness, and the number of copies of the allele at this generation (Here
N=1000).

gen: 0 pstat_most_freq_seq: 0 0 catttcggtc... 0.976249 1000
gen: 100 pstat_most_freq_seq: 0 0 catttcggtc... 0.976249 978
gen: 200 pstat_most_freq_seq: 0 0 catttcggtc... 0.976249 757
gen: 300 pstat_most_freq_seq: 13 1 catttcggtc... 0.996808 873
gen: 400 pstat_most_freq_seq: 13 1 catttcggtc... 0.996808 930
.
.

As we can see, a substitution occurred somewhere between generations 200 and 300, and this
was the 13th new allele to segregate in the population. For the full example see: examples/popsim1.sh

rescape Manual

7.2 --pstat=most freq noseq,N

Similar to --pstat=most freq seq,N but omitting the DNA sequence.

7.3 --pstat=mean fitness,N

Print just the mean fitness of the population every N generations. Here’s an example from
examples/popsim5.sh:

gen: 0 pstat_mean_fitness: 0.603736
gen: 200 pstat_mean_fitness: 0.746087
gen: 400 pstat_mean_fitness: 0.827466
gen: 600 pstat_mean_fitness: 0.947273
gen: 800 pstat_mean_fitness: 0.956373
gen: 1000 pstat_mean_fitness: 0.962493

In the above simulation, a sequence was not specified, so instead one was sampled uniformly
from sequence space, and thus the initial allele is not very fit at the beginning of the simulation,
but the population quickly evolves adaptively toward a much more fit solution.

7.4 --pstat=all alleles,N

Instead of just the most frequent allele, print a line for each allele in the population. Summary
lines are the same as in --pstat=most freq seq:

gen: 500 pstat_all_alleles:
0 0 catttcggtcttgtttttggcgggaagatgttctcgactgtgtgccgcgt 0.976822 1000

gen: 750 pstat_all_alleles:
39 1 catttcggtattgtttttggcgggaagatgttctcgactgtgtgccgcgt 0.978885 3
0 0 catttcggtcttgtttttggcgggaagatgttctcgactgtgtgccgcgt 0.976822 997

gen: 1000 pstat_all_alleles:
50 1 catttcggtgttgtttttggcgggaagatgttctcgactgtgtgccgcgt 0.982094 4
0 0 catttcggtcttgtttttggcgggaagatgttctcgactgtgtgccgcgt 0.976822 996

This example is provided in examples/popsim4.sh.

7.5 --pstat=mutational effects

This prints each time a new mutation occurs and following the statistic name are the background
allele sequence on which the mutation occurs, the ID of this background allele, the ID of the
new allele, the number of copies of the background when the mutation occurs, the type of
mutation (point, duplication, deletion), the site at which the mutation occurs (for deletions and

rescape Manual

duplications, this is the left-most nucleotide involved in the event), the number of nucleotides
involved, the bases at the site(s) involved on the original background, the bases this is replaced
with, the fitness of the background allele, the fitness of the new allele, the new DNA sequence
resulting from the mutation, and whether this is the first time this allele has been seen. Here is
an example:

gen: 17 pstat_mutational_effects: background: catttcggtc... old_id: 0 \
new_id: 6 copies: 999 type: point site: 27 len: 1 from: ’a’ to: ’t’ \
bfit: 0.976249 mfit: 0.996041 new: catttcggtc... isnew: 1

The above is from the example: examples/popsim2.sh.

7.6 --pstat=allele loss

Tracking of when alleles are lost from the population (due to not getting sampled in the subse-
quent generation) gives output like:

gen: 18 pstat_allele_loss: 6

which indicates that at generation 18 allele with ID 6 was lost.

7.7 --lstat=fitness,N and --lstat=sequence,N

In the same way that any number of --pstats can be given, one can also request multi-
ple --lstats. This allows one to get multiple types of information about the requested se-
quences or sampled sequences without multiple invocations of the program. Here is an exam-
ple (examples/lstat1.sh) in which both --lstat=fitness,4 and --lstat=sequence,4 were
given with no --seq provided (so all outputs are for randomly sampled sequences):

rep: 0 lstat_fitness: 0.425137
rep: 0 acgagtgcgtcggatgccctcactttctatgttgtgcggcagttcaaaca
rep: 1 lstat_fitness: 0.194325
rep: 1 gagtgagttgtgacagattatgtggctgtgggcgcgcagcccgactttcc
rep: 2 lstat_fitness: 0.532711
rep: 2 acgggccgacggggcggaggcagaatccgcgcgtacctatcaagacctgg
rep: 3 lstat_fitness: 0.564029
rep: 3 tgaacctatataactcacactgtattctcggtggccctcgaacaaataat

7.8 --lstat=expression,N

This is given to compute the expression in each trans-background (in the same order as the
--condition arguments). In the following example, both --lstat=expression,1 and --lstat=fitness,1
are used along with one enhancer sequence. Here the fitness function is parameterized with

rescape Manual

--ffunc=f4 and --coef=0.6,0.041,0.786,0.999, with the later three coefficients indicating
the optimal expression. In the output below, we can see that the sequence is near the fitness
optimum (1.0) but due to slight misexpression, it is not perfectly fit:

rep: 0 lstat_expression: 0.059615 0.90464 0.99958
rep: 0 lstat_fitness: 0.976889

7.9 --lstat=tf occupancy,N and --lstat=wsum,N

One interesting summary of the enhancer sequence is the amount of binding of each TF in each
trans-background at each nucleotide position. This can be obtained with --lstat=tf occupancy,N
producing output like the following:

rep: 0 lstat_tf_occupancy: condition: 0 tf: 0 oc: 0.000345 0.182335 0.25777 ...
rep: X lstat_tf_occupancy: condition: 0 tf: 1 oc: 0.00062 0.10839 0.26971 ...
rep: X lstat_tf_occupancy: condition: 1 tf: 0 oc: 0.001075 0.656755 0.916395 ...
rep: X lstat_tf_occupancy: condition: 1 tf: 1 oc: 6.5e-05 0.00614 0.01471 ...
rep: X lstat_tf_occupancy: condition: 2 tf: 0 oc: 0.001005 0.664515 0.928995 ...
rep: X lstat_tf_occupancy: condition: 2 tf: 1 oc: 5e-06 0.00042 0.00097 ...
rep: 0 wsum: 8005.96 3.33561e+07 1.9619e+07

The first six lines give the occupancy profile for the indicated trans-background (condition) and
TF. One the occupancy levels for the first three nucleotide positions are shown in this output.
The X simply indicates it’s printing a continuation of the previous replicate as this statistic is a
multi-line entry.

The final line shows the sum configuration weight over all configurations:
∑

ck
w(ck). This

calculation, as well as the occupancy calculations are exact in the sense that they use a dy-
namic programming algorithm to sum over the combinatorially large number of configurations.
In contrast, expression calculations are estimates based on a sample from the distribution of
configurations. The output above is from examples/lstat3.sh.

7.10 --lstat=configs,1

To simply view a sampling of configurations, one can use the --lstat=configs,1 argument.
Here the number of configurations is given in the --steps=N argument. N configurations are
sampled under each trans-background. The following example is given in examples/lstat4.sh.

rep: 0 lstat_configs: condition: 0 printing configs
2:33, 2:23, 2:16,
2:33, 2:26, 1:20, 1:14,
2:43, 2:33, 2:26, 2:16, 2:8,
2:43, 2:33, 2:26, 2:8,
rep: X lstat_configs: condition: 1 printing configs
1:44, 1:36, 1:28, 1:20, 1:14, 1:7,

rescape Manual

1:43, 1:34, 1:20, 1:14, 1:7,
2:45, 1:36, 1:28, 1:20, 1:14, 1:7,
1:36, 1:28, 1:20, 1:14, 1:7,
rep: X lstat_configs: condition: 2 printing configs
1:36, 1:28, 1:20, 1:14, 1:8,
1:45, 1:36, 1:28, 1:20, 1:14, 1:8,
1:36, 1:28, 1:20, 1:14, 1:7,
1:41, 1:34, 1:28, 1:20, 1:14, 1:7,

Each configuration is given as a line, with the tuples having the structure TF:position.

7.11 --neighbors=R

Here I provide an example of the use of --neighbors=R (see above). For this run the arguments
--lstat=expression,1 and --lstat=sequence,1 are given. Since the enhancer in this example
is L = 20 bp, there are L ∗ 3 neighbors and the original sequence, resulting in 2(3L + 1) records
for the two statistics:

rep: 0 lstat_expression: 0.02123 0.251142 0.33598
rep: 0 aagagtgcgtcggatgccct
rep: 0 lstat_expression: 0.0207075 0.243028 0.33882
rep: 0 aggagtgcgtcggatgccct
rep: 0 lstat_expression: 0.0423825 0.498242 0.623918
rep: 0 acaagtgcgtcggatgccct
rep: 0 lstat_expression: 0.0111825 0.155055 0.36141
rep: 0 acgaatgcgtcggatgccct
rep: 0 lstat_expression: 0.03893 0.446225 0.55018
rep: 0 acgagagcgtcggatgccct
.
.

8 Obtaining source code

The entire package is coded in C++ and makes use of the Standard Template Library and object-
oriented programming, so it’s reasonably accessible if you’re looking to modify it or extend it. I
will be happy to answer your questions (kbullaughey@gmail.com).

So far I have tested it on Linux (Red Hat Enterprise 5) MacPro (10.5) and MacBook (10.6).
It comes with a configure script, and so if you’re having trouble porting it to another platform
or it is not compiling, I can try and generalize the build further. See the README that comes with
the source distribution for information on compiling the software and for information about its
dependencies.

All the source code is available under the MIT License, with the additional request that if
you’re publishing anything using my software that you cite my original paper [2].

rescape Manual

Finally, there are several undocumented uses of this package that are only partially imple-
mented including Orr’s block model and a method to do inference based on expression data
from multiple enhancers along the lines of the original Segal paper but using parallel tempered
simulated annealing. I never came back and finished this feature and there are large chunks of
code related to this goal that can be ignored.

References

[1] Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U (2008) Predicting expression
patterns from regulatory sequence in drosophila segmentation. Nature 451: 535–40.

[2] Bullaughey K (2011) Changes in selective effects over time facilitate turnover of enhancer
sequences. Genetics 187: 567–82.

	Overview
	Terminology
	Modes of operation
	Inputs
	Invoking rescape: an example
	Parameters
	Regulatory problem
	Fitness function
	Evolution simulation
	Population statistics
	Landscape statistics

	Output
	--pstat=most_freq_seq,N
	--pstat=most_freq_noseq,N
	--pstat=mean_fitness,N
	--pstat=all_alleles,N
	--pstat=mutational_effects
	--pstat=allele_loss
	--lstat=fitness,N and --lstat=sequence,N
	--lstat=expression,N
	--lstat=tf_occupancy,N and --lstat=wsum,N
	--lstat=configs,1
	--neighbors=R

	Obtaining source code

